

Clinical Safety & Effectiveness Cohort # 18

The implementation of an Oxygen Targeting protocol in the NICU

CENTER FOR PATIENT SAFETY & HEALTH POLICY UT HEALTH SCIENCE CENTER[™] SAN ANTONIO

The Team

• Division

Rolando Macias, MD Veronica Rettig, NNP-BC Irene Sandate, NNP-BC Joey Rose, RRT-NPS Merideth Mobley, RN Abbie Aburizik, MBA CS&E Participant CS&E Participant CS&E Participant Team Member Team Member Facilitator

• Sponsor Department:

Margarita Vasquez, M.D. – Associate Professor, Department of Neonatology

AIM Statement

The aim of this project is to implement an oxygen targeting protocol for all patients in the NICU receiving supplemental oxygen with a goal of 50% compliance within 60 days of implementation.

The process begins when a patient who requires oxygen therapy is admitted to the unit and ends when patient no longer requires oxygen therapy. It is important to implement this protocol in order to improve long-term outcomes of NICU patients, specifically retinopathy of prematurity.

Project Milestones

- Team Created
- AIM statement created
- Weekly Team Meetings
- Background Data, Brainstorm Sessions, Workflow and Fishbone Analyses
- Interventions Implemented
- Data Analysis
- CS&E Presentation

September 2015

January 2016


January 27 - present

September 2015 – February 2016

March 1– March 25 2016

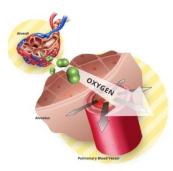
January 8 - present

June 3, 2016

Background

Retinopathy of prematurity (ROP) is a potentially blinding eye disorder that primarily affects premature infants weighing 1250 grams or less that are born before 31 weeks of gestation

This disorder is one of the most common causes of visual loss in childhood and can lead to lifelong vision impairment and blindness. ROP was first diagnosed in 1942.


There are approximately 3.9 million infants born in the U.S. each year; of those, about 28,000 weigh 1250 pounds or less.

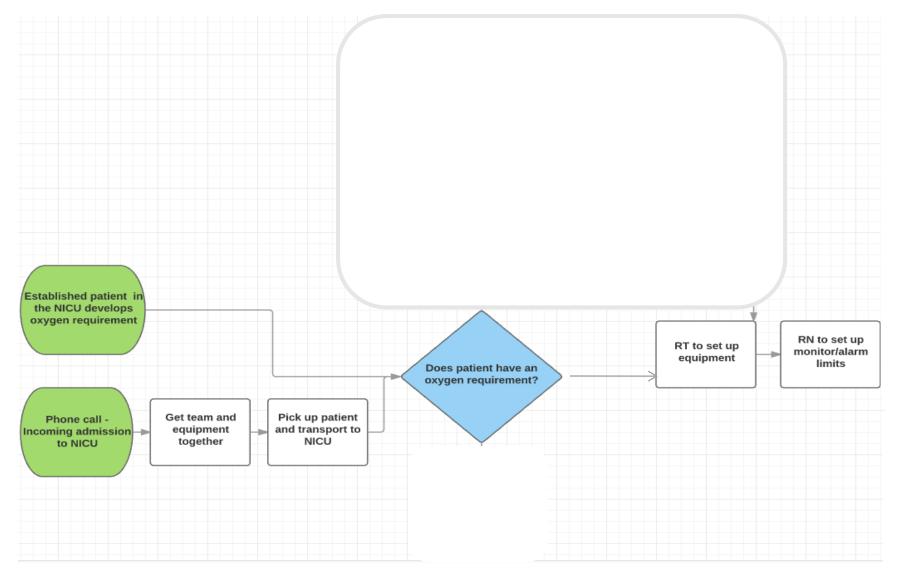
■About 14,000–16,000 of these infants are affected by some degree of ROP. About 1,100–1,500 infants annually develop ROP that is severe enough to require medical treatment. About 400–600 infants each year in the US become legally blind from ROP.

•Several complex factors may be responsible for the development of ROP. The two major risk factors of ROP are the use of oxygen and a decreased gestation period.

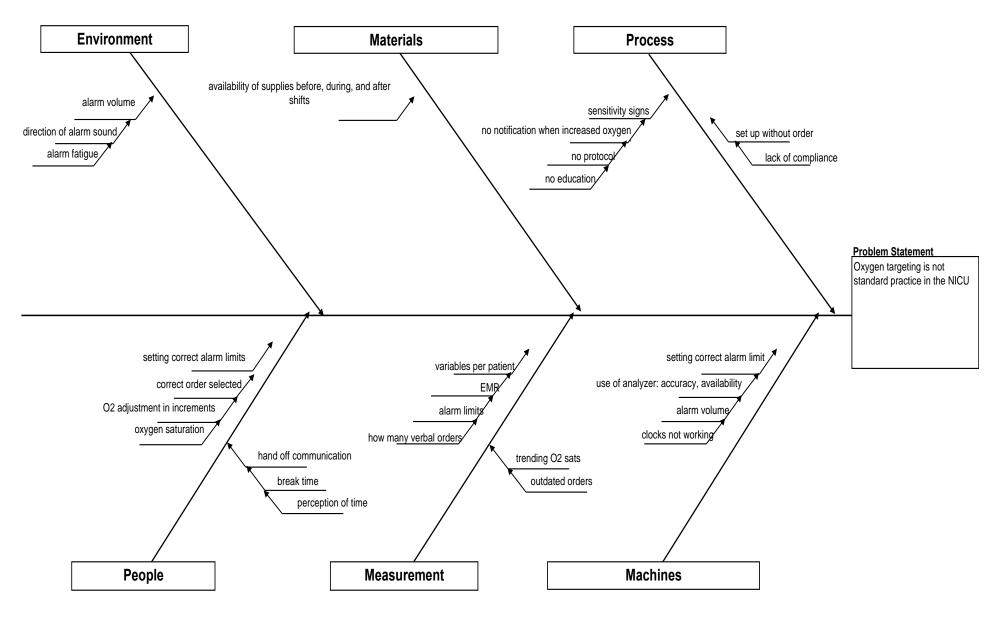
Excessive oxygen contributes to ROP through regulation of vascular endothelial growth factor (VEGF).

•The NICU at UH has a high rate of infants who develop severe ROP and require treatment. A protocol to maintain spO2 saturations within an specific range to prevent hyperoxia did not exist.

Background

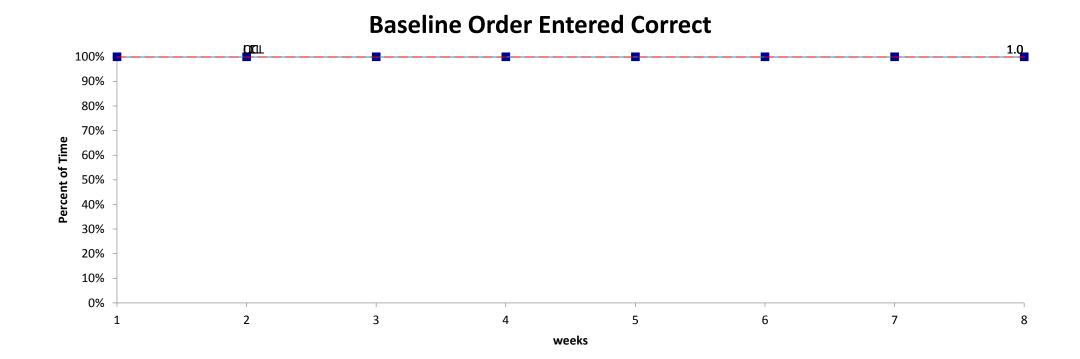


UH VON 2011-2013 ROP statistics

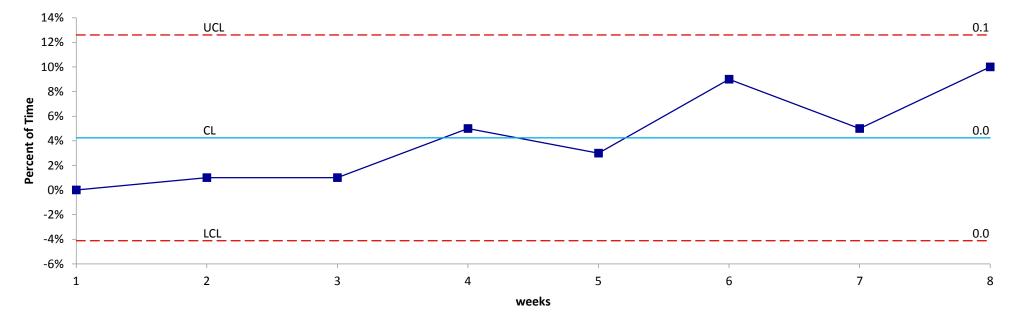

	UH Rate 2011-2013	Type C NICU Mean	Type C NICU Q1	TYPE C NICU Q3
Any ROP- All Eligible	32.3%	36.0%	26.2%	47.9%
Any ROP- Inborn	28.4%	33.5%	22.4%	45.4 %
Surgery- All Eligible	4.7%	3.4%	0.7	5.0%
Surgery- Inborn	3.5%	2.8%	0	4.3%
Anti-VEGF Injection	5.8%	1.4%	0	2.0%

Plan: Process Analysis

Plan: Fish Diagram



Plan: Pre-intervention Data Collection


Patient Label				SpO2 Goal Set Ordered; <u>General</u> Cardiac PPHN Target SpO2: to % Alarm Limits: to %				
Mode: NC	HFNC	NIV	VENT	HFOV	ino.	DA	TE:	
Time								
Flow Peep/MAP								
FiO2/SpO2	/		/		/	/	/	/
Alarms	-		-		-	-	-	-
Mode: NC Time	HFNC	NIV	VENT	HFOV	ino.	DA	ГЕ:	
Flow Peep/MAP								
FiO2/SpO2	/		/		/	/	/	/
Alarms	-		-		-	-	-	-
Mode: NC	HFNC	NIV	VENT	HFOV	ino.	DA	re:	
Time Flow		_		_				
Peep/MAP								
FiO2/SpO2	/		/		/	/	/	/
Alarms	-		-		-	-	-	-
Comments;								

	4RN 123	456/8		28 to 96 %	Gen. Order:	3317
Mode:	NC Vapo F/P	NIV Vent I	Alarm Limits:	to% DATE:	GA at birth:	DOL: 2 M
Time Flow Peep/MAI	0300	7	11	15		300
FiO2/SpO2	30/93	30/94	30/92	45/97	21/96 2	1/94
Alarms	95-98	85-100	85-100	m		85-100
Mode: N	Vapo F/P	NIV Vent	HFOV iNO	DATE	02/20/1	6 DOL: 2m
Time	Ban	5700	1100	1500	900	2300
Flow eep/MAP	IL	1		1		1
FiO2/SpO2	21/94	21/98	21/97	21/94	21/96	1 195
Alarms	85-101	88-100	88-100	88-160	88 - 100	85-94
Mode: NC	Vapo F/P	NIV Vent	HFOV iNO	DA	TE: 2/28/11	
Time	0300	7	11	15	1200	1300
low eep/MAP	1	1	1	1	1	
02/Sp02	21/93	21/92	21/94	21/90	21/94	21/98
	- 1.0	0(-10)	85-10	85-100	88 -100	198-100

Pre-intervention Data

Pre-intervention Data

Both Alarms Correct

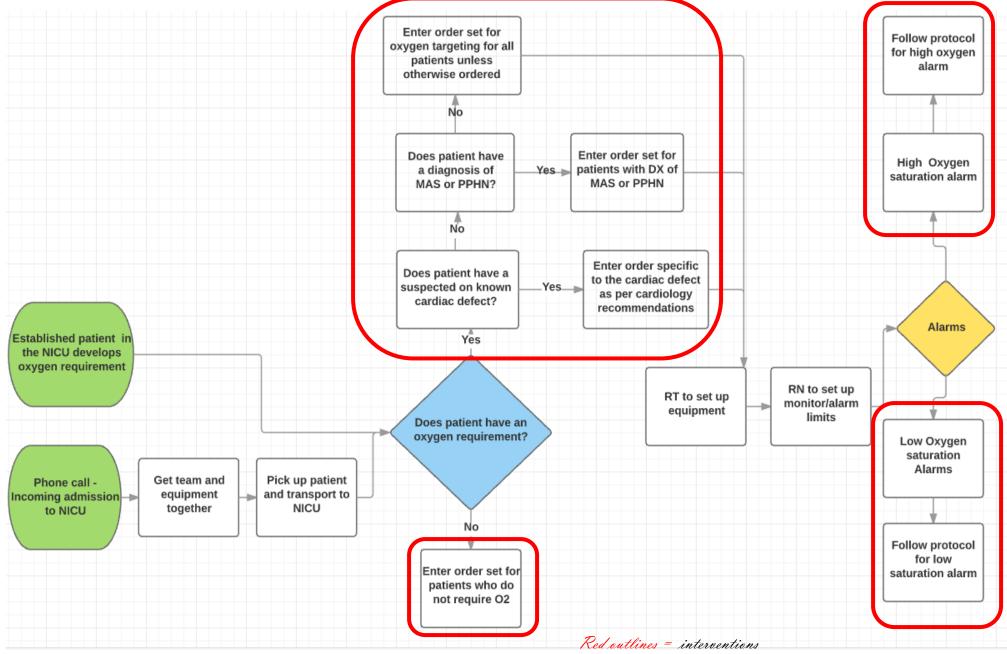
DO: Implementing the Change

3 phases

1. Collect data & develop protocol - September 2015 – Feb 29 2016

Lessons learned:

- No standardized approach to oxygen targeting in place in NICU
- Vast amount of literature and none of it which came to a specific conclusion on what an appropriate target range should be
- Need to limit the data collected only to what applies to protocol
- 2. Education, oxygen target cards & algorithm at each bedside March 1-25 2016


Lessons learned:

- Over 200 staff members needed to be trained, needed to be concise
- During education period, we learned that it would be beneficial to assess learners knowledge a pre/post test was developed
- 3. Quality checks March 28, 2016 to present

Lessons learned:

- Continuation of long-term data collection needed but will need to modify the team
- May need to decrease the amount of data collected and the interval

Do: Intervention

Do: Protocol Education

Mandatory In-service on Oxygen Targeting in X-Ray Conf. Room

Tues, Mar 1st 0630

Thurs, Mar 3rd 0630

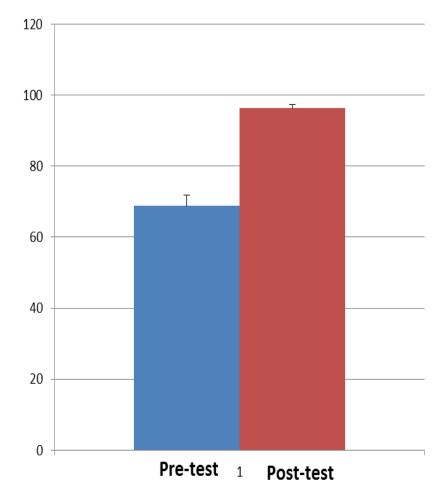
Tues, Mar 8th 0630

Tues, Mar 10th 0630

Oxygen Targeting in the NICU

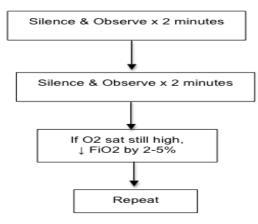
Rolando Macias, MD Veronica Rettig, NNP-BC . Irene <u>Sandate</u>, NNP-BC 2016

Do- Education

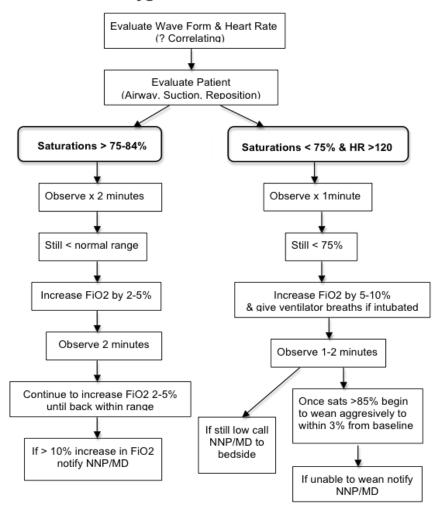

Oxygen Targeting Pre & Post Test

- 1. Hyperoxia plays a big role in which of the following disease processes?
 - A. Retinopathy of Prematurity
 - B. Chronic Lung Disease
 - C. Necrotizing Enterocolitis
 - D. All the above
- 2. Oxidative Stress is defined as
 - A. An imbalance between production of free radicals and antioxidant defenses.
 - B. Stress related to the implementation of a new oxygen targeting protocol
 - C. An uncharged highly reactive molecule that has unpaired electrons that can cause damage to cells

3. The area of the eye treated with laser therapy in patients with retinopathy of prematurity can eventually have normal function/vision.

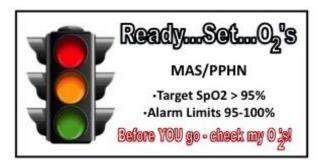

True False

- 4. The current oxygen saturation alarm limit orders for patients on oxygen who do not have PPHN or a cardiac defect are:
 - A. 88-98 B. 85-96
 - C. 85-105
- 5. A term infant is not at risk for the effects of hyperoxia. True False



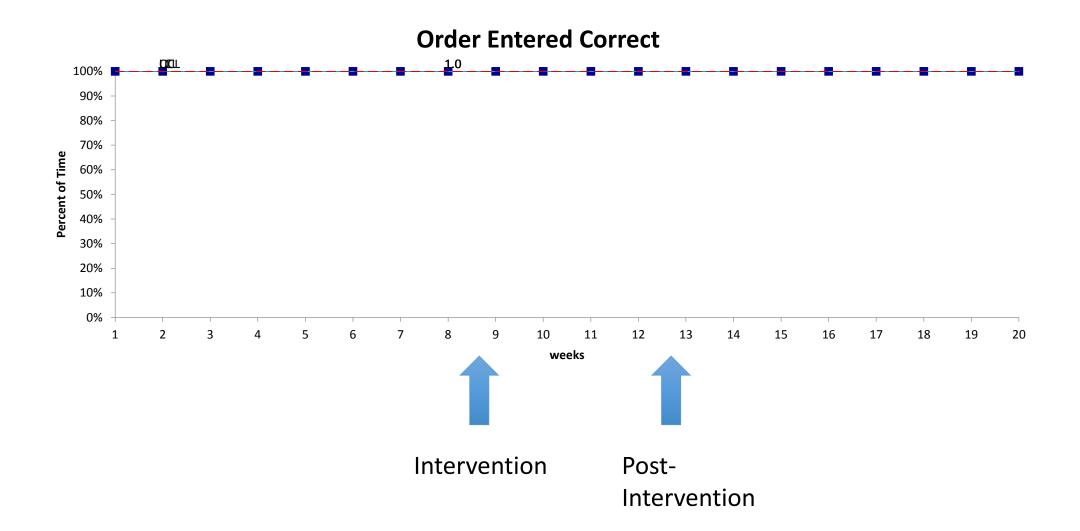
Do – protocol algorithm

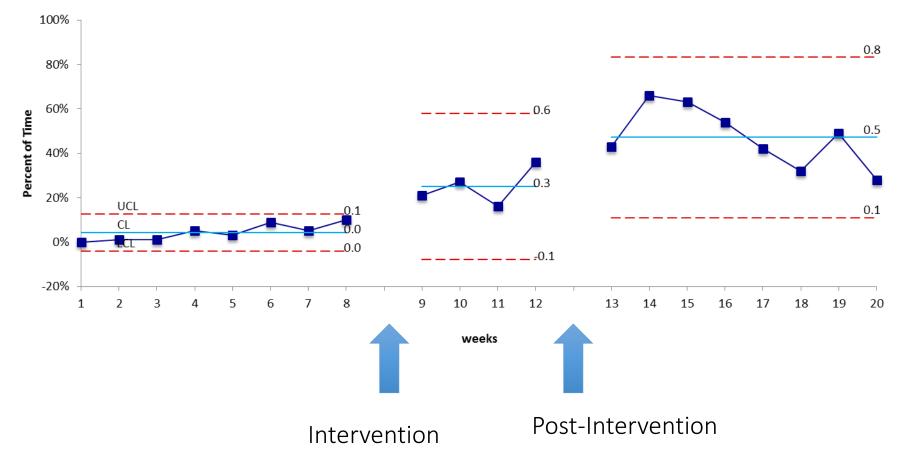
High Oxygen Saturation Alarm



Low Oxygen Saturation Alarm

Implementation




Do: Interventions based on issues/drivers from fish diagram

Environment	 Alarms project back: new monitors in the future (1/2 million dollars for 52 monitors) Alarm fatigue: implementation of order set
People	 Protocol developed Educational in-services for nurses and respiratory therapists Daily quality checks
Measurement	 Checklist for handoff Pre-Post test given at in-services and will repeat in 6 months Trend O2 saturations using EMR and present at daily huddles
Machines	 Plant engineering to fix and synch all clocks in unit
Material	 O2 target cards & algorithms at each bedside Notification of increased O2 requirement addressed in algorithm Lack of accountability will be addressed by nurse managers as needed
Process	 New employee orientation to include presentation on O2 targeting protocol

CHECK: Results/Impact

CHECK: Results/Impact

Both Alarms Correct

ACT: Sustaining the Results

Short term audits

• Daily to weekly

Long-term audits

- Quarterly review of patients who require treatment for ROP
- Vermont Oxford Network (data obtained on a yearly basis)

Education

- PRN based on compliance
- Yearly competency for nurses
- Part of new employee orientation to the NICU

Return on Investment

• UHS 2015

7 cases severe ROP that required laser or injection with anti-VEGF Potential cost of one treatment of laser or anti- VEGF injection = \$11,500/ case Anti VEGF injection = \$3513 for 0.3 mg dose \$7314 for 0.5mg dose Facility cost of Laser or injection = \$190 Patient exam = \$100 Cost of one day in NICU bed = \$3900

Potential ROI for prevention of Reactive Oxygen Species (ROS) comorbidities (CLD, IVH, NEC) = **PRICELESS**

Conclusion/What's Next

Compliance

- Peaked within a few weeks of intervention to ~65%
- 8 weeks post-intervention, at ~ 30%

Barriers to sustaining the results

- Conflicting orders
- alarm fatigue
- Some programming issues with the monitors have been identifiied

Plan

- Working with IT to modify order set
- Contacting monitor manufacturer to modify alarms
- Continue audits (RT \rightarrow RNs)
- Relay audit data to nursing staff at daily huddles
- Graphs showing compliance to be placed on LEAN board in unit
- One on one counseling with staff who is not compliant

Team Picture

